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Abstract

We propose in this paper two 3D methods to solve the diffraction-radiation problem with forward speed.
This physically complex problem is reduced to the determination of the potential of the flow around the im-
mersed part of the body. Boundary conditions are linearized and calculated at the mean boundary position. The
total velocity potential is obtained by summing incident, diffraction and radiation velocity potentials.

Each problem is resolved by two 3D singularities methods (mixed distribution and sources distribution). The
Green function is determined with the almost perfect fluid assumption, or with the perfect fluid assumption and
a radiation condition at infinity.

1. Introduction

During the last two decades, the naval industry has
rapidly developed. Ships are constructed for more and
more rapid transport and tankers are very large.
Oceanic research and ocean exploitation are linked to
the construction of floating factories and off-shore
platforms.

Studies on physical models allow the prediction of
seakeeping of structures, but they remain limited for
two main reasons.
(i) Systematic testing in a wave tank requires a good
deal of time and is expensive owing to the great num-
ber of parameters: different appendices for the same
hull, cases of loads, Froude numbers, frequencies,
steepness and incidences of the wave, depths of the
fluid . . .
(ii) Wall effects and scale effects sometimes influence
the results. Their interpretation and their extrapolation
are therefore very difficult.

Thus, the joint use of physical and numerical models
enables us to restrict the number of experiments and
to compare different results.

Numerical models based on the strip method lead
to very good results for a body at zero Froude number.
Nevertheless poor results follow from its different ver-
sions for a body with forward speed. These models
are limited firstly by the shape of the hulls (slender
body) and secondly by the Froude number values
(low speed).

Therefore, it is very important to make 3D numer-
ical models to compute ship motions with forward
speed. The first of this type of model was presented
in 1977 by M.S. CHANG. It is based on the singular-
ities method of sources distribution. We propose in
this paper two 3D singularities models, the first being
based on a sources and doublets distribution (mixed
distribution) and the second on a sources distribution.
*) Labatoire d'Hydrodynamique navale Ecole National Superieure de
Mecanique, Nantes, France. Jean Bougis, now PRINCIPIA R.D. Sophia
Antipolis, France.
1) The general equation of the almost perfect fluid is

where is a very small positive time constant.

2. Notations and hypotheses

Let S be the surface of the hull, its external nor-
mal vector, and its tangent vectors, where lies in
a horizontal plane and is equal to

SL is the free surface, SF the waterplane area and
C is the waterline. is the whole fluid domain.

Let (00 ; xo, yo, zo) be a fixed frame and ( 0 ; x , y , z )
a moving system of axis bound to the mean position
of the ship which translates with the uniform velocity

. Oscillations are characterized by the velocity
and the angular velocity vector
Incident wave is characterized by its incidence .

its pulsation a and its amplitude a. is its celerity.
Figure 1 shows these notations.

We shall assume the following hypotheses:

(i) The fluid is almost perfect, isovolume and its
flow is irrotational1);

(ii) The incident wave has a small degree of steepness;
(iii) The movements of the body are small around its

mean position.

3. Boundary problem

The afore mentioned hypotheses imply the exis-
tence of a velocity potential function in the
whole fluid domain . The determination of this
function is reduced to the solution of a boundary

problem, which can be expressed in the fixed frame,

or in the moving frame.
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3.1. Absolute potential expressed in the fixed frame

In the fixed frame (Oo ; xo , y0 . zo) the absolute potential is the solution of the following boundary problem

3.2. Absolute potential expressed in the moving frame

In the moving frame (0 ;x, y, z) the absolute potential is the solution of the following boundary problem

4. Decomposition in seven simple problems

Let (M ; t) be the velocity potential function defined by

(M; t) must satisfy equations (1), (2), (3) and (5). The equation (9) can be substituted for (4).

The linearity hypothesis allows us to superpose different states, the solutions of which are computed separat-
ely.

The first part of the right-hand side characterizes the Neumann-Kelvin problem, the solution (M;t) of which
is not dependent on the time in the relative frame. Thus it induces constant loads on the hull, the mean position
of which is changed, but this problem can be treated separately.

The second part of the right-hand side of the equation (9) characterizes the diffraction problem, the solution
of which is ( M ; t ) . ( M ; t ) and ( M ; t ) excite the ship with a sinusoidal load of encounter pulsation
Thus, the body performs sinusoidal oscillations of pulsation around its mean position.
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The last part of the right-hand side of the equation (9) characterizes the rad ia t ion problem in the six modes.
Solutions of these problems are linear funct ions of twelve constants: six amplitudes and six phases, or six compo-
nents in phase wi th and six components in phase with We can resolve the radia t ion problems for
only six movements of unitary speed and without phase, and we can deduce the results for six movements of

unitary speed and with a phase of

Thus we have to resolve only seven simple problems: six for the radiation (one in each mode) and one for the

diffraction.

5. Determination of the movements

After having computed the solution (M; t ) of the diffraction problem and the six solutions ( M ; t ) j
[ 1,6] of the radiation problems, we can compute the pressure on the hull with the Lagrange linearized formula.

We obtain

6. Intergral expression of the velocity potential

Let be the surface of a hemisphere defined by the Figure 2.
The application of the third Green formula in the limited domain gives us

Figure 2

The same formula applied in the domain limited by SL, S and symmetric of in relation to SL gives
us

Hydrodynamic =

Hydrodynamic =

Hydrostatis

Hydrostatic

Inertia

Inertia

Excitation +

Excitation +

Radiation

Radiation

Here, the terms of radiation, of hydrostatic and of inertia are linear functions of the twelve unknowns.
Thus we have twelve linear equations whereas the movements are the twelve unknowns.

where is the volume mass of the fluid.
From that time onwards, we can write the Newton equation. Its terms are the following forces and moments



106

We shall decompose all the functions on the temporal base func t i on and , as

Now, we can introduce the Green function. Let g(M, M' ;t) to be a harmonic funct ion , definite, bound and
twice differentiable with respect to M and M' in the domain We suppose that this function is regular at
infinity. If M is a point of , then we take g(N, M ' ; t ) where N is the symmetric point of M in regard to SL We
can apply the second Green formula in the domain with the functions and g(M, M ' ; t ) and the same formula
in the domain with the functions and g(M, N';t). We shall note gc the function relative to and , and
gs the function relative to and . All these functions are harmonic, then the volume integrals are equal to
zero.

Taking into account the fact that the two points M and N are equal on SL, one obtains

We should like to determine the functions gc and gs in order that the integral on SL is equal to zero, but this
is not possible because gc and gs would depend on the hull. Then we must determine the Green function in order
that the free surface condition is verified on the whole plane of equation z = 0.

If and both satisfy the equation (2), the following equiva-

lence results

( 1 7 ) g s ( M , M ' , t ) = - g c * * ( M , M ' ) +gc*(M,M')

Thus we shall note only g(M, M ' ; t ) the Green function g c ( M , M'; t) and we shall write

Since the free surface condition is fulfilled on the whole plane (SL and SF), the integral on SL is not equal to
zero, but we can transform it with the relation (2) connecting the di f ferent derivatives. Indeed on SL, we have
the following relation

In the line integral on C, all the terms without spatial derivatives of G(M, M'; t) are equal to zero (to collate

where (M ; t) has the same behaviour in as in
The sign is changed because is here the in ternal normal v e c t o r ,

The integrals on the surfaces and are equal to zero as a consequence of equa t ions ( 3 ) and ( 5 ) .
After the superposition of equations (12) and ( 1 4 ) , we o b t a i n the general integral expression of the velocity

potent ia l funct ion
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1 5). Af ter an in tegra t ion by part of the other terms, one e v e n t u a l l y obta ins :

we have, of course, a harmonic function which satisfies all the necessary conditions at infinity and the free surface
condition.

where the doublets distribution is unknown and the sources distribution is known. For the diffraction problem
we have

These distributions satisfy the following equations

and for the radiation problem we have

7. Mixed distribution (sources and doublets)

We can choose arbitrarily the function (M;t) defined in '. Nevertheless (M; t) must satisfy certain con-
ditions in order that the aforementioned formulae are allowed.

If we take the particular following case

Thus we have the superficial singularities distribution kinematically equivalent to the hull

in each point M of the hull, we obtain an integral equation where theWriting the velocity potential
on S.unknown is
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When the hull cuts vertically the free surface, the term cancels and the integrals on C with the surface

gradient of µ * ( M ) and µ**(M) vanish.

8. Sources distribution

If we consider the other following particular case

The right-hand sides of these equations are given by the formulae (24) and (25).
After the resolution of these equations, the velocity potential in each point of the space can be computed

with the help of the following integral expressions

(M;t) is a harmonic function and satisfies, as (M; t) the free surface condition and the conditions at infinity.
Writing the velocity (M; t) in each point M of the hull, we obtain an integral equation where the unknown

is the discontinuity of the normal derivative of the potential of the hull.
Thus the superficial singularities distribution kinematically equivalent to the hull is

This distribution of singularities satisfies (30) and (31).
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9. Green function

In the past, the determination of the Green function relative to the diffraction-radiation problem with forward
speed has interested numerous writers. Thus M.D. Haskind (1946), R. Brard (1948), then T. Hanaoka (1953),
L.N. Sretenskii (1954) and T.H. Havelock (1958) have given different formulations of this function. J.V
Wehausen and E.V. Laitone (1960) have analysed all these formulations,

We prefer to use the Green function formulation proposed by P. Guevel, J. Bougis and D.C. Hong (1979)
which is adapted to the demands of numerical treatment and asymptotic expansion.

We propose here the Green function built in the most general case for an infinite depth. To construct this
function, we make the presumption that G(M, M'; t) can be represented by the following integral expression,

where f ( t ) is any function of the time as the coordinates x ' o ( t ) , y ' 0 ( t ) , z'0(t) of M'. This choice is justified by
the following three reasons.

(i) This function is harmonic in the whole domain -M ' as , since . . is the elemen-

tary solution of Laplace equation in the domain definde by zo < 0, obtained by variables separation
procedure:

(ii) This function verifies (M, M'; t) = 0 in the whole domain ;

(iii) This function must verify the condition G(M, M'; t) = 0 in the whole domain if we do not want

to write divergent integrals. Nevertheless we shall have to check later that the solution found conforms to
this,

In these conditions, the function (0,k,e;t) will be determined by imposing that G(M,M';t) fulfills the
linearized free surface equation. The general solution is, for a build in static equilibrium at time t.

N' denoted the symmetrical point of M' in relation to the free surface and

In the particular case where f(t) = x'0(t) = x ' ( t 1 ) + Ut, y ' 0 ( t ) = y ' 0 ( t 1 ) , z'o(t) = z'0(t) and t1 goes to
, we obtain

(38) G(M, M'; t) = G 0 ( M , M ' ;t) + G1(M, M ' ; t) + G2(M, M'; t)

with
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In this expression the characteristic sizes of flow are adimensionalised in relation to a reference length which
is, for example, the ship waterline length

Let Kl and K2 be the poles of the integrand of G 1 ( M , M'; t) and K3 and K4 those of the integrand of
G 2 ( M , M';t), Then the analysis of the denominators gives us

Integrate with respect to K, and let tend to zero, and the following expression results

Z+ Z' + i G1, G2 and G3 represent the following modified exponential integral functions

wi th

denotes
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It must be emphasized that
(i) If v , the first integral of the formula (48) does not. exist, and must be replaced by zero in the

second integral;
(ii) If v = , the integral of G2(M, M ' ; t ) is divergent;
(iii) If v , the first two integrals of the formula (48) do not exist, and must be replaced by zero in

the third integral,
(iv) The same results would be obtained without , but with a radiation condition at inf ini ty , which is (5).

"In the relative frame, the energy of all the wave systems move away from the body generating them".

10. Resolution of the integral equations

The integral equations will now be solved with a method of discretization. Let the hull be discretized with N
panels. We shall assume that on each panel the densities of singularities a or µ are constant. Each integral on S is
decomposed in a sum of N integrals which concern only the Green function or its derivates,

Thus we obtain, for example, for the sources distribution

where m is the number of the panels cutting the free surface, i the index of the panel on which the body con-
dition is written, and

Two methods might be envisaged to extend this second distribution of singularities in the general case.

(i) To consider these 2m supplementary unknowns and 2m supplementray equations, writing the body con-
dition in m other points or writing that the potential is equal to zero inside the body. But these points

cannot be on the waterplane because the integrals of the Green function relative to the coefficients of
would be very difficult to compute,

(ii) To solve the system without these supplementary terms and procede by an iterative method. The derivatives
of µk* and µk** in relation to sk can be computed with one of the following two methods. The first is the use
of the formula (20) without these terms, and the second is the finite difference between the last two panels
of the hull before the free surface.

In all the cases, we have one linear system with the same number as equations that of unknowns even if we
must, in the second case, repeat the resolution.

All the coefficients of influence (as (57) and (58)) are given by an integral of G*(Mi, Mj), G**(M i ,M j ) or its
derivates in relation to ni, nj or xj. Since the Green function depends on the spatial coordinates through the

variable (or ) which is a linear function of those, we can integrate analytically the Green function and its
derivatives on the panels. Thus we must only integrate numerically wi th respect to .

with Mi the control point of the panel i (for example the center of gravity of the panel i.).
We have of course N equations (55) and N equations (56). Thus we must solve a system of 2N equations with

27V unknowns.
For the mixed distribution, the procedure is analogous, but there are many more terms. However, we must

when the hull cuts the free surface with anremark that there are 2m supplementary unknowns,
angle different from
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11. Irregular frequencies

The first numerical tests have shown that the resolution of the system relative to the mixed distribution has
irregular frequencies. These irregularities come of the inside adjoint problem; we can suppress them with two
supplementary equations which arise from the fact that the potential is written equal to zero inside the body.
The Figure 3 shows the differences between the results obtained without and with these equation about the surge
hydrodynamic coefficients for a barge (20 panels).

For the sources distribution, no irregular frequencies have been detected, and the determinant of the system
never vanished in the intervals studied. However, if this second method has irregular frequencies, they are not
the same as for the first program because the two integral equations are not adjoint, as opposed to the problem
at zero Froude number. Figure 4 shows the values of the determinant of the sources distribution in the interval
of the irregular frequencies of the mixed distribution (20 panels).

12. Integral on

We have determined (M; t) with a heuristic method, assuming that the contribution of the integral on is
equal to zero. Now, we must prove it. We shall give here only a sketch of the proof.

(M; t) is defined by the relation (59)

expression in which Is denotes the integral on the hull S and the integral on the waterline C. Let (M; t) be the
function defined by the following relation

(M; t) and (M; t) will be equal for each point M of the domain if
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13. Numerical results

We present some numerical results about two different hulls.
Firstly we have tested our two computer programs with a D.N.V. barge (rectangular parallelepiped 90m x 90m x
40m) for a Froude number equal to 0.15.

Results concerning added-mass coefficients (CM i j) and damping coefficients (CAij) are given on Figures 6 and
7. They show a good agreement between the two methods with only 10 panels on the half hull The greatest
differences are obtained for surge motion.

Secondly we have tested the computer program based on sources distribution with a hull series 60 CB 0.70 for
a Froude number equal to 0.20.

Results concerning added-mass coefficients (CM i j) and damping coefficients (CA i j ) are given on Figures 8, 9
and 10 with experimental results of J.H. Vugts and numerical results of M.S. Chang. They show a good accuracy
of our results with experimental measurements except for C455 and CM26 , for only 27 panels on the half hull

These last results are obtained with a correction on the normal vector which is written as
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14. Conclusion

The results of this work have shown that the first order motions in regular wave with forward speed can be
predicted with fairly good accuracy.

Now, our computer program can be developed for calculating added wave resistance and hydroelastic response
of marine structures.

An important work has been made to allow an industrial use of this computer program named DYNAPLOUS
which is now working properly.
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