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In the past, the problem of novenents of ships in operation has
interested numerous witers. Thus MD. HASKIND (1946), R BRARD
(1948) and T. HANAOKA (1953), then L. N. STRETENSKI | (1954) and

T.H HAVELOCK (1958) have given different formulations of the
GREEN function relative to this problemwhen the depth is infinite.
In the nore delicate case of a finite water depth, suggested fornu-
lations are less common ; the first belonging to J.K LUNDE (1951)
was inmproved by J.C. DERN and G FERNANDEZ (1979).

The anal ysis of the asynptotic wave field was outlined from these
formul ations by MJ. LIGHTHI LL (1956), K EGGERS (1957), and
E. BECKER (1958).

In this article we present the asynptotic expansion of the GREEN
function and the wave far field velocity for each case |inked to

the values of the pulsation and velocity, together with the radiation
condition at infinity in the case of unlimted depth. Afterwards, we
envi sage the case of finite depth and illustrate the qualitative
conservation of the results acquiered previously. For this purpose

we use the GREEN function fornulations proposed by P. GUEVEL, J. BOUG S
and D.C. HONG (1979) and which are adapted to the demands of nunerical

treatment and asynptotic expansions.




Let us take a solid with a horizontal constant mean speed in an incom
pressible perfect fluid subject to the action of gravity, limted by a
free surface and by a level and horizontal bottom ; it oscillates around

Its mean position when it is affected by an incident swell.

The introduction of the classic linearity hypothesis has two basic
consequences. The first one is the possibility of superposing different
states obtained separately. The second is to wite boundary conditions

on the mean positions of the free surface and the hull.

In these conditions, the flow around the body can be determned using
el ementary operators (GREEN function) which generate in the fluid a
harmoni ¢ potential satisfying, by construction, the linearised free
surface condition, the condition of slipping on the bottomand the

condition of radiation to infinity.

The l'ast constraint is expressed sinmply in the case of the wave resistance
instill water by witing that the fluid is not disturbed infinitely
upstream and in the case of diffraction radiation at zero FROUDE number

by suppressing the regressive gravity waves generated at infinity.

In the more conplex case of diffraction radiation with forward speed, the
condition radiation at infinity is not so evident due to the diversity of
gravity wave systems which appear. W therefore prefer not to introduce
solutions foreign to the penonenon studied, preserving qualitatively the
fluid s dissipative character by a time constant ¢ which we shall tend

to zero after determning the solution. This classic procedure constitu-
tes a mathematical artifice which takes into account the progressive nature
of the setting in notion of the physical fluid and the tendency of the
latter to develop towards a state of static equilibriumuwhen all distur-

bances have ceased.



The asynptotic analysis of velocity potential generated by a source
type elenentary operator allows us to establish the topography of
the wave far field and to determne the radiation condition which
wi |l traduce the conformty of the solution obtained without e to

physical reality by elimnation of aberrant solutions.

BOUNDARY PROBLEM

The determnation of the velocity potential generated by a pontual
source type operator, moving with a constant uniforme speed U.?x
and whose strenght is the sinusoidal time function Qcos wt, isS

reduced, given the hypotheses agreed upon, to the solution of a
boundary problem ; which can be expressed in a fixed frame, or in

a systemof axis moving with the source (figure 1).

Figure 1

1,1 Absolute potential expressed in the fixed frame

In the fixed frame (0 ; x, y, z) the absolute potential is the

solution of the follow ng boundary problem :
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In the mobile frame (O ; X, Y1, zi) the absolute potential is the

sol ution of the follow ng boundary problem:
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Construction principle of the speed potential function

The free surface condition brings in partial derivatives in relation

to the two independent variables z and t. We therefore have recourse

to an integral formulation to transform the derivation relative to z

into an algebraic operator and thus obtain a linear differential equa-

tion of the second order the only derivations of which are temporal

the absolute reference.

W shal | therefore construct the velocity potential functionin the
form (1,3) in the case of infinite depth, and in the form (14) in

the case of finite depth.
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expression in which M, denotes the symetrical point of M

inrelation to the bottom

At this stage we draw attention to the followi ng three remarks :

These functions are harmonic ind - M by construction since T;“T and
. MM
] L [ are harmonic, and since the functions eX? e'K{xcose+ ¥ il o)
MM
1

and ch k(z+h) e’k (X €OS 6+ y SIn ) 50 olementary sol utions to the
Laplace equation in the fluid areas defined respectively by z <0

and - h <z <0, obtained by variables separation procedure.

These functions verify by construction 2 ¢(M:t) = 0 on the bottom
az
or Tim ¢ (M;t} = owhen the depth is unlimted (a condition which takes
L -

the place of the preceding one in this case) ;

These functions nust verify the condition tim ¢1M;t) =0Y¥Med

| . I L N o

if we do not want to wite non-convergent integrals. Nevertheless we
shal | have to check later that the solutions found conformto this

demand.

I nthese conditions, the functions §(e,k, e; t) will be determ ned

by i mposing on ¢(Mt) to satisfy the linearised free surface equation.



THE DEPTH IS UNLIMITED

When the depth is infinite,

by the procedure previously explained,

s{Mt) = ¢0(M;t) + ¢1(M;t) + ¢2(M;t)

with
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Expressions in which M, denotes the symetrical

and in which the characteristic sizes

is written in integral form :

eK(Z+Z'+1P

the velocity potential function, obtained
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of flow are adi mensionalised in relation to a reference length £which

is, for exanple, the immersion depth of the source. Thus we have :

(2,5)
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Let K, and K, (0 < K, < Ky be the poles of the integrand of
and K and K, (0 < Ky < K4 if

If Ks and K, are conpl ex) those of the integrand of

LAY
Im (k) < 0 < Im (K)
¢L(Mt).

K; and K, are real



The preceding functions are witten after integration relative to K :
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v
to —~ . Thevariable r denotes z +z' +i o and the functions G,

2 v
@ and G3 represent the follow ng nodified exponential intégrale functions
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wth:
& (8) = £y (&) Im () > O
& (2) = £y (g + ie) Im(g) =v
& (2) = B (&) - 2in Im (£) <0 (2,9)
Near potential and far potentia
The asynptotic behaviour of the integral exponential function
[eE Ey (g) = £ LI (¢ = 1) when [z| + =] enables us to separate
ternms which decrease a priori, such as 5'1, from the others. The first
are generally called near potential and the second ones far potential
It should be noted that the so-called far potential may still contain
decreasing terms such as g"l. ¢ shall be interested only in far poten-
tial here.
Let 3 be the angle for which o is cancelled. W thus have : ¢ = R sin (8-2)
supposing R = v/(x - X ) 2 +(y - y‘)2 and g= o - % With tge = Xhlhi%.
If we notice that the complex poles (K; and K, for -e_ < ¢ < eC§ {egd
to real exponential terms the exponent of which is, to the nearest rea
positive function, - Rtheir study will be superfluous since they will
not contribute to the far potential. W then have :
() = L Re{ieiwt[f M - i et ® e } Yy o (2,10)
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Al'l' the integrals so defined can be expressed in the follow ng form :

b
I(R) = -[ £(8,R) e Re(0) 4q (2.15)
a

Expression in which R represents the projection of IMM'l on a horizon-
tal plane and increases indefinitely when the asynptotic analysis is
carried out ; it follows that e (9) oscillates very rapidly in the
interval (ab). The function f (e,R) is continuous, |imted and does not
oscillate rapidly in the interval considered. W are therefore in the
conditions to apply the stationary phase principle (Cauchy - Lord Kelvin).
According to the values of the parameters g and v the functions (0
corresponding respectively to the poles K (ief1,41) possess or do not
possess m ni ma, maxi ma or horizontal tangent inflection points, which
determine the behaviour of ¢(Mst) and of its derivatives to infinity.
W nust therefore study the existence of zeros of the functions

g'i{s) and the corresponding signs for (e}

Asynptotic expansion of ¢ y(Mt)

The function g¢e) relative to the first pole is expressed :

1+2vcoss -~ v1+dvcoss

2F2cos?e

gl(e) = Kl(e} sin{6-g} = sin{6-2) (2,16}
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and admts as derivative with respect to

q(8) = 2v2cosB [_g (co‘s(?e-B,‘- i} 1)+\..f‘—'“1_+45'c“o'_59]{2,1;
1 F2[1+4vcose+(1+2vcose)¢1+4vcose cost [ 2 COSB

The first factor of g"l(o) I's never cancelled. Qur study is thus |ed
to that of zeros of the second factor except for the two integration
area |imts for which a local study proves necessary.

m

Wen ¢ tends to - —, g'y (9) has a |imted expansion in relation to
2

(6 + ). The latter is witten in the vicinity of -
2

M A

gy(8) = 32[2vc058-sinﬂ-rm2ﬂ1—10v2)0056+4u51n§](e+ DY+ o(e+ E)
‘ 2 2

When o tends to 8 g {e)admtsaslimtK, (&), avalueincludedin

theinterval lo,«2) and therefore strictly positive.

In the openinterval 1- Z,8[, a graphic study wi |l enable us to conclude
2
on the existences of zeros as well as on the increase or decrease of

g'¢e) inthe vicinity of these values (figure 2).

Figure 2

The results obtained have been brought together on figure 8. The angle &,

is defined by the relation tgé; = 2v, and theangle 8'; by the existence

of &'y such as g¢'. (e'1) =g (8';) = 0. Note that for v= L, the angles
L i /2

g, and 8', are equal.

1
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The function g, (9) relative to the second pole is expressed :

1+2vcosd + v1+dvcose

9,(8) = K2(e) sin(6-8) = sin(6-8} (2.19
< 2F2cos?e
and admts as derivative with respect to
2 -
a3(6) = = 2u7cosp [l (cestee B‘t}/’m—m] (2.2
F [1+4ucose-(1+2vcose)%T+4ucose]cose 2 COSR

As previously, the study of the zeros of g', (e) is reduced to that

of the termin square brackets except for the two area limts,

\Wen 6 tends to - g, g's (6) has a limted expansion in relation to

(6 + 7). The latter is witten in the vicinity of - 2
2 2
; 1 .
92(6) = ;EY;:_ESé [2cose+(s1ns+2vcoss)(e+-%) + o(e+.%)] (2,21
2

When & tends to g, g, (o) is identified with K, (g) which is always

strictly positive.

In the open interval 1- X gL, a graphic study enables us to conclude
2

again :
Figure 3

The results obtained are shown together on figure 8. The angle Bo
defined by the existence of s, such as a'5 {08,) = 9"y (8,) =0 Is al ways
greater than Kelvin's angle s, (tgs, =/ 8), and tends to /2 when v

tends to infinity.
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2,3 Asynptotic expansion of 21{Mt) .

The study of ¢57(M5t) is nore conplex than the foregoing study since

there obviously exist two distinct nodes according to whether v is
smal | er or greater than v_ = 1.
¢ g

The function gs (e) relative to the third pole is expressed :

1-2vcose = V1-4vcosse

g,(8) = K,(98} sin{e-p) =
3 3 2F2c0520

-

sin(6-8) (2,2

for (1- 4v cose >0) and admts as derivative :

2 -
gé(e) = > 2\) COSgB [l (COS(ZB 8\. - l)+‘z:|__ﬁ|\)cos__\..l](2’;
F [1-4vcose+(1—2ucose)/1-4ucose]coss 2 cosB

W are led to study the zeros of the second factor except for the
limts g,n/@and possibly =sfor which we shall have to carry out

a local study.
Wen etends to /2 g'; (e)has a limted expansion whith respect

to {n/2 -8). The latter is witteninthe vicinity of =»/2:

75(0) = -2 2vcoss-sing) + 33’2[(1-10v2}c058+4vsin8] (= -8) + o(Z -8) (2,2
2 2

\When e tends to 8, g'{e)adm’ts as limt Kee) whi ch is always inclu-

ded in theinterval [w2,4s21 and therefore always positive.
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If vis smller than v we shall carry out again a graphic study,
but in theinterval Js,s/2[. Figure 4 enables us to discuss the

exi stence of zeros of g’ 4{8) inrelation to v and 2.

Figure 4

If vis greater than v, g'; (e)has a linited expansion in the

vicinitiesof -s_ and 0.

c
tgo
95(9) = 4?52[1 - —C] /-6 =0 + o(vV-6 -8 ) {2,25)
2x/vs1'nec ¢ ¢
tgo
ggm=4ﬁp4uﬁﬂi_]f&f +o0(/6-8_ ) (2,25)
2r/vs1'nec ¢ ¢

wher e 6. is defined by 1 - 4vcose . = 0.1n these two cases 9'5(8)

clearly possesses a non zero limt independent of v and 8.

A graphic study will be carried out in the intervals in which the

two functions are defined (figure 5).

Figure 5.

The results obtained are shown together in figure 8 The angle 8
is defined by tgsy = 2v and is therefore identical to &,, and the

angle s'shy the existence of o'y such as g's(e'y) = g"5(8'5) = C 3

8'3 =0 for v =/2/27 = 0.272.

1
It should be noted that for v = Pt the angles s, and e are equal,

2



and that for v = —— 8, and 8*, are equal to.
i 3

The function 9,4(9) relative to the fourth and last pole is expressed :

94(8) = K,(0) sin(o-p) = 122vC0S0 +vI-Ave0se oy, (g ) (2,27}

2 2
2F cos s

for (1 - 4vcose > 0) and admts as derivative :

2 -
ay(8) = 2vecoss [}_(cos(Ze 8 . N\-fTdoeosn 1
i F2[1-4vcose-(1-2vcose)/1-4vcose]cose 2 COSA
28)
In the present case we still have to study only the zeros of the second

factor, except in respect of the integration domain limts.

Wen 6 tends to -m/2, g',{6) has a linted expansion with respect to

-6+ n/2). The latter is witten in the vicinity of -n/2 :

F2({ o+ %)3 5 )

\When etends to 8, g's (8)is identified wth K, (8) which is always stric-
tly positive.

I vis smaller than v_, a graphic study of the openinterval 1- I, 8l
2
enables us to conclude (figure 5).

Figure 6.
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If vis greater than v the expansion of g',(e)are limted to the

Cl

vicinities of -6, and .

]

tgec o o
g;;(e) 452 |1 - ———— V-8 -8 | + o(/—ec—e ) (2,30

tge
((g) = 402 |1 + —E— Vo8 [+ o(VB-0_) (2,31)
qusinec ¢ ¢

It is clear that in these tw cases g',(8) has a non zero |imts whatever

vand 8 my be.

Figure 7 enables us to illustrate the possible existence of zeros of

g'y (8)-
Figure 7

The results obtained in this way are shown together in figure 8. It

shoul d be noted that for v < v_, there exists anangle &, defined by

cl
the existence of s, in such a way that g'q (84) = @"4 (8,) =0 IS
al ways smaller than g,, and tends to zero when v tends to v.. Vhen

v > v there is no longer anangle g, corresponding to a double solution.

Figure 8,

Description of wave far field :
The respective contributions of each pole in relation to the parameters v
and gbeing determined, there remains the definition of the wave far

field aspect according to the values of wv.
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W recall for this purpose the general form obtained for the integral

| (R. When, on the interval (ah), the function g (o) possesses maxim
at the points e= o, minim at the points e= « . and horizontal tangent
inflection points at the points e= o, then:

i[Ra(ay) = 2] -1/2 -1/2 ]
- Z f(uM,R)‘/ . [Ra(e) - 5] R [1 + O(R )J
1 I g"(aM) |

; ilRg{a ) + =] -1/2 -1/2
DRI Y BRI i)y [1 » O(R ﬁ]
o 1" (e ) |

—

—
-~

pa—
]

+

+

/3 Llg"(a)]

(2

k]

|f one of the stationary points {g* («) =8 ; g" (a} # 0) coincides
with one of the integration limts, its contribution is equal to half
the value given by (232). On the other hand, if, at one of the inte-
gration limts, we have g' (a) = 0, g' (a) = C and g"* («) # O the
contribution of the integral differs both by its coefficient an by
its phase. W obtain :

/3 .p _1/3 ]
g(e.)  -1/3 1/3

2 (R ”1/3)[ 6 ] e R [1+0(R }]

.

1

32)

173 ifRg(ays L1 -1/3 -1/3
f(a,r) LL1/3) [ 6 ] e [Ra(as ) R [1 + O(R )] (2,33)

3 Ug"a)l

173 i[Ra(b)r I} -3 -1/3
f(b,r) L(1/3) [ 6 ] e [Ra(o): ] R [1 + O(R )] (3,34
3 |9"(b) |

)
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The sign + corresponds to the cases where g'" (a) > 0 and ¢"' (b) < O,

the sign - to the opposite cases.

If 6, is the solution of the equation g';(¢) = v the wave observed in

the direction 8 propagates according to the axis defined by 8. (+ m and,

in the absolute reference, has a celerity of

é? =Y Cosei[ v - 1] =9 [1 + Jli4vcosei] (2,35}

FK; (85} cose; 2w

Figure 9 gives the general aspect of the different contributions of the
poles with respect to v. On this subject, several remarks should be

made.

\then a doubl e solution exists, it is obtained as being the limt of
two distinct solutions, one of which is a maximumand the other a m -
nimum It follows that the two systems are in quadrature in the corres-

ponding direction.

In the direction defined by 8, = &5, the tangent at the potential Iines
of one of the wave systens is parallel to the axis k. \Wenvis smaller
than 1/¥°2, this remrk applies to the annular system when v is equal
to 17/ 2 the two wave system having this property ; and when vis grea-
ter than 17V/°2 it is the systemhaving & = 8. as asymptote which is
concerned. A consequence of this property is that in the first case the
annul ar systemis nore colosed than a half ring, whereas the contrary

occurs in the second case.
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When vis equal to 14, the group velocity of the waves generated
forwards by Ks ont the axis O is equal to the speed ¢¥. In fact,

the wave velocity on this axis is then :

€.9.0U .4 (2,36)

The celerity is equal to twice the groupe velocity. In the relative
frame, the velocity of these waves is thus equal to U and the group

velocity is zero. Then we observe a phenomenon of energy cramm ng.

The formulae (235 show that in the absolute frame the celerities

f’l, 5’3 and 6"4 are always positive whereas 52 I's always negative.

The identification of the curves obtained is not trivial. Indeed, |et
us remenber that in the case of the Neumann Kelvin problem the poten-

tial lines are involutes of astroids.

Radi ation condition at infinity :
The asynptotic wave field analysis, and particularly the determnation
of the velocity of the different wave systens, provides us a sinple

formulation of the radiation condition at infinity.

Inthe relative frane, all wave systens nmove away fromthe body

generating them

O course, this general condition enconpasses the two special cases of

Froude number zero diffraction radiation and the Neumann Kelvin problem

In addition, it is not verified by the parasite mathematical solution

obtained by the model of the perfect fluid without «.e may be convinced
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sinply by remarking that the additionnai solution obtained without ¢

i's deduced fromthe appropriate solution by a sinmetry about the

axis Q.

THE DEPTH IS FINITE

\When the depth is finite, the velocity potential function is witten

inthe followng form:

B(H5E) = ag(Mst) + b (Mit) + o,(Mst) iy
W th:
£Nf2 oo
sty == 21y L .2 Re% 4o | chK{Z+D\chk(z41) eK[-1+m]dKHwSu
Ll M) wh " chK
-T2 [
X cosuwt (3,2)
R} oo K
. y \':;
b, (150) oD qim [__ Jut [ oo | ehk(Zeldchk(ze1y e K dK ”
Az g>n+ L wh ck2K [(@-FKXcos6) 2-KthK-21 € (G-FKeos 6§
_.11|‘?‘ N
(3,3)
+W1 .
N N -fuwt chK{Z+1)chK(Z+1) &' K dk
¢2(H,t)- 5;11@+ ;; Re {e de 3
CRs S ch2K {(7%+FKcose ) 2-KthK+2i £ (+FKcos )]

..“fb fr)

(3,4)
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Expressions in which M, denotes the symmetry of M with regard to
the bottom and where the sizes characteristic of flow are adimen-
sionalised in relation to the depth h (1 is replaced by h in the
formuleas (25)). The denomnation of the poles in paragraph 2 is
conserved (K, and K, for 9 (Mst), K; and KM for 4, (M5t) toget her

with their order.

The integration of ¢/M;t) in relation to the variable K is nmuch nore
conplicated than in the case of unlimted depth. W shall restrict
ourselves to giving only the results necessary to the continuation

of our study.

Regar di ng b, (Mst), the transformation of the product of the hyperbolical
cosines into a sumof exponentials, then the serial expansion of the

function ch'’k allow us to integrate with regard to K and

o

¢O(P1;f)=-—9—[1 P S lz(-l)ml{ Loy, 1,1 CoS .-

4 || M| |MM'1[ 2nh n=0 |”"‘1r'11’ LR MO R RS )
(3,5)

with .

LZy=+7Z +2(n+1

Z' o= +Z' -2 (n+1) (3.6)

Zw =- 27 +2n
Zu=-27 -2(n+2

Regar di ng ¢4 (Mst)and ¢ ,(M;t), we shall isolate the poles of the
integrand, being careful to conserve their behaviour in their proxi-

mties and at infinity by witing :
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’ Ay e K gk, e
' = P (K) + + (3,7}
ch2K [(&-FKcos ) 2-KthK] K- Ky+ie' K=~ K,+ic'
- - PN
’ B(Ky) e 2K B(K,) e K
= Po(K) + — + (3,8)
ch2K [(#+FKcose)2-KthK] K~ Ky =ie” K= Ky +ic”
with
) Ak e Ak, e
Pk} = . - - (3,9
ch?K [(¥-FKcose) 2-KthK] K - Ky K -K,
y B(Ky) e 2K Bk, e
pZ(K} = - - - (':':’]_I"}‘]
ch?K [(@+FKcos8)2-KthK] K - K, K - K,
Z
MK) = K£1+thK) (3.11)
= [(&-FKcos8)*~KthK]
dK
2
5(K) K(1+thK) (2,12)

Etj[(m+FKcose)2-KthK]
dK
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¢' and " have the same behaviour as €, It is then possible to integrate
anal ytically the contribution of the poles after deconposing the
product chK (Z + 1) ch K(Z + 1) into a sumof four exponentials.

As for the contribution of the regular part, it can be approxi mated

by a series of exponential functions, which [eads to a behaviour ana-

logous to that of b, {M5t).

Near potential and far potential_
As in paragraph 2,1, vie can separate the terms which decrease a priori
such as R fromthe others. For the same reasons, only the real poles

will be studied. By witing :

£.(0) = A (Ky) chk, (7+1) chK, (Z'+1) e 2K i=1,2 (2,12
Fi(8) = B (Ky) kK, (Z+1) chK, (7'+1) e 45 i=3,4 (3,14
We obtain :
N it F 'iK1Q P K, o
¢“(M;t) = - i R Jw w fl(a) e ~ de + f?(e) e da év v (3,15
21Th B J
~-Ti3 =i
8 137 ‘8
. TK,0 1K,0 ]
6oy (Mst) = + L Re)ie ‘“‘t[ij(e) e ° do- [fy(e)e * ds swc (2,16
2mh ' |
g -7y
B e
s 1Ka0 1K, 0
¢2](T~1;t] o 2 Re;ie ‘“t[Jf3(e) e 3 de + f3(61 e - de
Znh
p +0e

quﬂ -
- - - 2
f4(8} e de f v>vc and 2<8< BC (2,17
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+Mie -9,
. 1K,0 Ky
8(M5) - Rea jglet [-[fo(e) e ° do - fa(8) e de]%
2'l|h - J
) . -WZ
¢ VRV and |8|<I8C! {3,18)
+5112 -9,
. KL iK,0
8 (M3t) = 2 Re%ie_1wt [.[f3{e) e °do - [f4(e! e 7 do
Zwh N
p iz
a2
/ K,
4
- Jfa(e) e d8:|§ v>v and 8. <3< > (3,19}
0.

The far potential is thus witten again in a formfavorable to the appli-
cation of the stationary phase principle. Nevertheless, a new difficulty
arises here in that the poles are no longer solutions of algebraic
equations and that it is not nossible to put themin an analytical form
W shal | remouve this difficulty by seeking analytical approxi mations
having the sane basic characters as the exact solutions. W shall then
obtain information which will no longer be quantitative, but which will
retainaqualitative significance in that the results will be qualitati-

vely independent of the approxi mtion found.

3,2 Analytical approximtion of the poles :
W& can express the poles simply only if they are solutions of al gebraic
equations the degree of which is equal to two at the most. W shall

therefore approximte vkehk by a function of the following form :

2
y (k)= bR+ (3.20)

K+d

since the equations to be solved are :
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/JKth K=+ {0t F K cose) (3, 21)

By inposing the value of the function and of its derivative at the

origin, y (K becomes :

2
y (K) = 2K+ bK (3,22)
K + b
The parameters a and are determned by inposing on y(K to connect
tangentially with /K in an abscissa point K. We then obtain for K

-

greater than the unit and different from 94 :

a=-1[2%-'<o] (3,23)

Ko L2k -3

bo S (3, 24)
2 /K -3

For K greater than K, v Kth K is approximted by v K. W then

~

find the solution in unlimted depth.

The figure 11 represents the approximation obtained for Ky= 2.2, a
qualitatively acceptabl e approximation since the characterisatics

of ¥ K th K are conserved, and particularly in the proximty of origin.

The approximate poles are solutions of the follow ng equations

2
+ FKeose = + 2k *bK (3,25

K+ b

B
w

It is clear that only the solutions coinciding with those obtained
in ulimted depth at the connection point K, would be suitable. These

solutions are expressed on the interval [ o , KJ, and for real Ks; and K4H~
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. = - D(1+Fcose)-irt/[b(1+Fcoss) -E}2 + 4{a+FcosoIbs (3, 26)
2(a+Fcos9)

¢ = - b{1-Fcose)+u-/[b(1-Fcosp)+&} 2 - 4(a-Fcose)bd (3.27)
2(a-Fcoso)

s - b(1-Fcos8)-w+v[b{1-Fcos6)~% )2 +4(a-Fcose)b¥ (3,29)
2(a-Fcos9)

¢ = - b(1-Fcose)-&-V[b(1-Fcose}-5]2 +4(a-Fcose)bi (3,29)
2(a-Fcose)

It is unfortunately no Ionger possible towite the poles ina form
exclusiVer dependent on the two single paraneters v and g since g
and F intervene separately. W are therefore led to discuss the
existence of extrema of the functions g.(e) according to the val ues
of & ,Fand g.

R e it LT WUt SR A

The function g; (8) is expressed :
gy (6} = K; (o) sin (& - 8) (3,30



and admts as derivative with regard to o :

bFsino
V{b(1+Fcose)-5]2 + 4(a+Fcose )bl

gi(e} =Y }cos(e-8}~sin(e—8)

1+ [ . /[b(1+Fcose)=m]2-+4(a+Fcose)ba:]f (3, 31)
Kl(a+Fcose) b(a+Fcose} ;

since K- is real and positive whatever may be e so that cose belongs

A
to theinterval (2 KXo

, 13, we are led to the study of the solutions

F
of the fol |l ow ng qugtion ;

cotq(s 6) = bFsine [1+ ~
/[b(1+Fcose}-5 ]2 +4(a+Fcose )by Ky (a+Fcose)
, /[b{1+Fcose)-2]2 ¥4 (a+Fcoso}bE (3,32)
b{a+Fcose)

Figure 12 shows that there exists a couple (s,F) and therefore a

Strouhal number v"c so that on the interval [~ ,g1:
7

g'1 (8) has no zero if ge[- % » B0 {8y > 0)

g'y (8) has one zero, minimum of g; (e), if & elsy, + gl

g'y (8) has no zero if gel- %-, Bl (8y > 0)
g'1 {e) has double zero if B8 = By

g'1 (6) has one zero, minimum of 94 (8), if Be]Bl, + gl

g'y (9) has no zero if gel- % , 80 (8" 0)

g'1 (8) has a double zero if g = By



'y (8)  has two distinct zeros, a mnimmand a maxinumof g, (e)
if 8els'y,8y)

g'y (0) has one zero, mninum of gq (8), if & e Jgy, + Ly
2

W therefore find the same conditions for existence of extrema and
horizontal tangent inflection as in the case of unlimted depth but

the values of v"., g, and g', depend of course on h.
Figure 12
The function 9o(8) IS expressed :

g, (8) = K, (8) sin (8 ~g)

inwhich K, () is defined by the formula (3,27) if cose » g+ /Ko
and by the same formula as in paragraph 2.2 if

cos8 « ——— | |t therefore admt as derivative according to the

KoF
val ues of

bFsine
/[b{1-Fcoso)+¥]2-4(a-Fcos 8} b

95(8) = K

5 {cos(e-B)-sin(e-B}

1- [ _ /[b{1-Fcos®) +8}2-4(a-Fcos6) b %
K,{a~Fcos ) b(a-Fcoso}

——
[n vl
o
i

KZ 3cos(e~81-sin(9-8)
{1+2vcos8)v1i+dvcose + ( 1+4vcos6)
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(3,33

(3,34)

2vsing (1 + /1+4vcose ) -2tq9]£ (3,35)
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Since K, is real and positive whatever o may be, we are led to the
study of the solutions of one of these expressions, according to

the val ues of

cotg(s-8) = bFsine 1- W
/b{1-Fcos8)+a)2-4(a-Fcos6)bd K,(a-Fcose)
- l/[b(_].‘FCOSB)i'm]2‘4(3""_(:058}b?;.\] (3 36)
b{a-Fcose}
cotg(a_B) - 2\)51*‘!9(1+/1+4\JC056) - 2tge (3’ 37)

(1+2vcose) v1+4vcoso +(1+4vcos)

Figure 13 shows that there exists a positive angle, but smaller than

that of paragraph 2, so that, for all values of

9’5 (o) is never cancelled if gef- %,32[
9'p (6) has a double zero if =g,
g', (6) has tw distinct zeros, a mininumand a maxinumof g, (g} if
o
g', (6) has one zero, maximumof 9, (8) if g=42L
2

W% again find the same conditions as in the case of unlimted depth,

B> being this time a function of h.

Figure 13



3,4 Asymptotic expansion of &, (M;t)
"2 R -

FKo

The function 93 (e) isexpressed ( > 1)
93 (8) = Ky (o) sin (6 -8) (3,38)

and admits as derivative with regard to s :

bFsine
Y{b(1-Fcoso)-%)% +4(a-Fcose)by

gé(e) = Ky icos(e-8)+sin(6-8)

[1+ 5 . VIb(1-Fcose)-5]? +4£a'F°°59]bm] (3,39)

Ks(a-Fcose) b{a-Fcos8)

since Kz is real and positive whatever ¢ may be so that cose belongs
Ko - o

FKo
lutions of the following equation :

to the interval [ s 1], we are then led to the study of the so-

-bFsing
/b{1-Fcos8)-512 +4{a-Fcoss)b%

cotg(e-g) =

- p 4+ YIb(1-Fcoss)-a}? +4(a-Fcos0)by (3,49)
Ks(a=Fcose) b(a-Fcose)

Figure 14 illustrates several modes according to the values of the

couples (w,F):

For v < Ve
a', (6} has one zero, maxi num of 95 (8) if gel- g, B4 (33 = 8y)

g'3 (8) has no zero if pelpy,t %]
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for Ve
'3 (8)
a's (e)
9’4 (8)

g'5 (9)
a'5 (9)
for v =
g's (o)
9'3 (8)
9'5 (8)

35 ()
9'3 (o)

g'5 ()
g'5 (8)

g'3 (8)
g'3 (8)
g'3 (9)
g's (8)
for v >
9'4 (0)
9'3 (6)
g'sy (8)

<

<

v <v'c .
has no zero if gel- I, 3l
2
has a double zero if B = 8'3
has two distinct zeros, a minimum and a maximum of 93 (e) if
Bels's, 6.1
has one zero, maximum of 93 (o) if 86[80,83]

has no zero if 85]63,%]

has no zero if Be[-'1,8'3[
2
has a double zero if 8 = 8'3
has two distinct zeros, a minimum and a maximum of 93 () if
Bels S’OC[
has one zero, maximum of g5 (8) if & = 8. = 85 = &

is never cancelled if B € ]BS, + 03

2
v < u"c :
has no zero if pel- 3,8'3[
has a double zero if g =g,

has two distinct zeros, a minimum and amaximumof g3 (8) if
1

Be] 8 3953]

has one zero, minimum of g5 (6} if Q(E]Q?Gc[

is never cancelled if BEEGC, + I
2

. T -
has no zero if gel- Es B3l (B3 = 6'3)

has a double zero if B = By = 8'3

has one zero, minimum of 93 (e} ift3e183,8c[

is never cancelled if Be[ec,+ s
Z

1 .
¢’
has no zero if pef- L, 83[

2
has one zero, minimum of 93 (8) if 8 e[BS, BC[

is never cancelled 1'f|Be[eC + 0
2
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Here too we find the same conditions as in the case of unlimted depth

B3s B'y and 6, being functions of h.
Figure 14

The function g4 (8) IS expressed :

9y (8) = Ka {8) sin (& - g)

N —
where K, (8)is defined by the fornula (3.29) if cos e » g_;_ﬁ_ﬁg’
F Ko
and by the sane fornula as in paragraph 2.3 if
s -V o - - -
C0S 6 < ————== . |t therefore admts as derivative according to the
F Ko

val ues of cos & :

. bFcose
gh{8) = K 3 cos{e-g}-sin(e-g8)
4 4 /Tb(1-Fcos8)-51Z + 4(a-Fcos6) by
1+ 3 _ /b(1-Fcose)-%J2 +4(a-Fcose)bs i
Kq(a-Fcose) b{a-Fcoso)
g&(e) - X, 3 cos(e*B)—sin(e-BJ. -2vsing(1+v/1-4vcosa) -2 tg%p
1-2vcos 6) V1-4vcos 6+( 1-4vcos6) }

since Kt is real and positive whatever & may be, we are led to study
of the solutions of one of theses expressions according to the val ues

of cos.e :

bFsing
/{b(1-Fcose)-&]2 +4{a-Fcose)bs

cotg(e-g} =

14 » _ V[b(1-Fcose)-&)2 +4(a-Fcos )b
Kq(a-Fcose) b(a-Fcos8)
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(3,41

(3,42}

(3,43)

(3,44)
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-2vsing(1+/1-4vcose) - 2tge (3, 45)

cotg(e-p) =
(1-2vcos9)¥1-4vcose +(1-4vcose) .

Figure 15 illustrates acouple (&, F) corresponding to v, SO that :

= for v < Ve
g'y (8) admits no zero if ge [- z, Bal

2

9'4 {(¢) bhas a double zero if &8 By

g'4 {6) bhas two zeros, a winimum and a maximum of 94 (e) if
m™
861349'{';[
3'y (8) has one zero, maximm of g', (6 ) if &=+ =
2
- for v > Ve
g'4 (6) s never cancelled if ge [- X , ec]
2
9'4 (8) has one zero, minimum of 9 (8) if ge To_, + I
€ 2
g'y (8} has no zero if 8 = + L
2
Once again we find the sane configuration as in the case of unlimted

dept h.

Figure 15

Y

For the four poles we have found the same results as those brought
together on figure 8. However, before accepting them such as they

are, several remarks are necessary

If the figures proposed take into account only one approximtion (K5 = 2.2),
different val ues of Ky have been studied and |ead to the sane results.

In the case where o is high, the poles Ki and K; nust be studied as K
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and l%, from the two fornulations corresponding to the cases of finite
and infinite depth according to the values of cos ¢ , but the results

remain qualitatively valid.

It should be noted that the true poles lead to continuous curves the
tangents of which are also continuous. It follows that the junctions
between the arcs relative to finite depth on the one hand, and infinite
depth on the other, nust be observed critically, in order not to introduce

errouneous results.

The nost inportant remark concerns the particular value F = 1.0, which
corresponds to a change of node for the Neumann-Kelvin problem but which

does not introduce any radical change regarding the problem tackled here.

CONCLUSI ON

The study_carried out has enabled us to give a conplete description of

the weve far field in the case of unlimted depth, and to show that for

a finite depth the general aspect of the asynptotic wave field is qualitative-
|y conserved, although the values of the different parameters depend on

the depth.

In particular it follows that the radiation condition at infinity is

expressed in the same way in both these cases.
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Figure 1 : Definition of the frames

Figure 2 . Existence of intersections of curves representing the functions
1/2 (59§~133141§l - 1) and - /1 + 4y cose according to the

cos B
val ues of v and s.

Figure 3 : Existence of intersections of curves representing the functions
Y2 (€25 (28 B} . 1y and + /T % v cose according to the
cos B

values of v and g.

Figure 4 . Existence of intersections of curves representing the functions
12 (€05 {20 “B) _ 1) and - /T - 4y coss according to the
cos
values of v < v, and 8.
Figure 5 : Existence of intersections of curves representative of the
functions U2 (S5 (20 =B) _ 1y and - /T =y coss  accor-
cos B
ding to the values v < Ve and 8.
Figure 6 : Existence of intersections of curves representative of the
functions 12 (93428 “B) _ 1y and + /T - &y cose  accor-
cos
ding to the values of v < Ve and g.
Figure 7 : Existence of intersections of curves representative of the

functions 1/2 (%95 (20 -8) . 1) and + vV 1 - 4y cos o
Cos B
according to the val ues of v < Ve and g.

Figure 8 : All results relative to the existence of zeros of the functions

g9'; (8) (ie [1,4]) in relation to v and 8.



