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In the past, the problem of movements of ships in operation has

interested numerous writers. Thus M.D. HASKIND (1946), R. BRARD

(1948) and T. HANAOKA (1953), then L.N. STRETENSKII (1954) and

T.H. HAVELOCK (1958) have given different formulations of the

GREEN function relative to this problem when the depth is infinite.

In the more delicate case of a finite water depth, suggested formu-

lations are less common ; the first belonging to J.K. LUNDE (1951)

was improved by J.C. DERN and G. FERNANDEZ (1979).

The analysis of the asymptotic wave field was outlined from these

formulations by M.J. LIGHTHILL (1956), K. EGGERS (1957), and

E. BECKER (1958).

In this article we present the asymptotic expansion of the GREEN

function and the wave far field velocity for each case linked to

the values of the pulsation and velocity, together with the radiation

condition at infinity in the case of unlimited depth. Afterwards, we

envisage the case of finite depth and illustrate the qualitative

conservation of the results acquiered previously. For this purpose

we use the GREEN function formulations proposed by P. GUEVEL, J. BOUGIS

and D.C. HONG (1979) and which are adapted to the demands of numerical

treatment and asymptotic expansions.
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Let us take a solid with a horizontal constant mean speed in an incom-

pressible perfect fluid subject to the action of gravity, limited by a

free surface and by a level and horizontal bottom ; it oscillates around

its mean position when it is affected by an incident swell.

The introduction of the classic linearity hypothesis has two basic

consequences. The first one is the possibility of superposing different

states obtained separately. The second is to write boundary conditions

on the mean positions of the free surface and the hull.

In these conditions, the flow around the body can be determined using

elementary operators (GREEN function) which generate in the fluid a

harmonic potential satisfying, by construction, the linearised free

surface condition, the condition of slipping on the bottom and the

condition of radiation to infinity.

The last constraint is expressed simply in the case of the wave resistance

in still water by writing that the fluid is not disturbed infinitely

upstream, and in the case of diffraction radiation at zero FROUDE number

by suppressing the regressive gravity waves generated at infinity.

In the more complex case of diffraction radiation with forward speed, the

condition radiation at infinity is not so evident due to the diversity of

gravity wave systems which appear. We therefore prefer not to introduce

solutions foreign to the penomenon studied, preserving qualitatively the

fluid's dissipative character by a time constant which we shall tend

to zero after determining the solution. This classic procedure constitu-

tes a mathematical artifice which takes into account the progressive nature

of the setting in motion of the physical fluid and the tendency of the

latter to develop towards a state of static equilibrium when all distur-

bances have ceased.



The asymptotic analysis of velocity potential generated by a source

type elementary operator allows us to establish the topography of

the wave far field and to determine the radiation condition which

will traduce the conformity of the solution obtained without e to

physical reality by elimination of aberrant solutions.

I BOUNDARY PROBLEM

The determination of the velocity potential generated by a pontual

source type operator, moving with a constant uniforme speed

and whose strenght is the sinusoidal time function Q.cos t, is

reduced, given the hypotheses agreed upon, to the solution of a

boundary problem ; which can be expressed in a fixed frame, or in

a system of axis moving with the source (figure 1).

Figure 1

1,1 Absolute potential expressed in the fixed frame

In the fixed frame (0 ; x, y, z) the absolute potential is the

solution of the following boundary problem :
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We shall therefore construct the velocity potential function in the

form (1,3) in the case of infinite depth, and in the form (1,4) in

the case of finite depth.

1,2 Absolute potential expressed in the mobile frame

In the mobile frame (O1 ; X1, y1, z1) the absolute potential is the

solution of the following boundary problem :
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1,3 Construction principle of the speed potential function

The free surface condition brings in partial derivatives in relation

to the two independent variables z and t. We therefore have recourse

to an integral formulation to transform the derivation relative to z

into an algebraic operator and thus obtain a linear differential equa-

tion of the second order the only derivations of which are temporal in

the absolute reference.
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expression in which M'1 denotes the symmetrical point of M'

in relation to the bottom.

At this stage we draw attention to the following three remarks :

These functions are harmonic in - M' by construction since and

are harmonic, and since the functions

and are elementary solutions to the

Laplace equation in the fluid areas defined respectively by z < 0

and - h < z < 0, obtained by variables separation procedure.

These functions verify by construction on the bottom

or " when the depth is unlimited (a condition which takes

the place of the preceding one in this case) ;

These functions must verify the condition

if we do not want to write non-convergent integrals. Nevertheless we

shall have to check later that the solutions found conform to this

demand.

In these conditions, the functions will be determined

by imposing on (M;t) to satisfy the linearised free surface equation.



with :

II THE DEPTH IS UNLIMITED

When the depth is infinite, the velocity potential function, obtained

by the procedure previously explained, is written in integral form :
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Expressions in which M'1 denotes the symmetrical point of M' in

relation to the free surface, and in which the characteristic sizes

of flow are adimensionalised in relation to a reference length which

is, for example, the immersion depth of the source. Thus we have :

Let K1 and K2 (0 < K1 < K2) be the poles of the integrand of (M; t)

and K3 and K4 (0 < K3 < K4 if K3 and K4 are real ; Im (K3) < 0 < Im (K4)

if K3 and K4 are complex) those of the integrand of (M;t).



Expressions in which cos is equal to and cos is equal

to . The variable denotes z + z' + i , and the functions Gl,

G2 and G3 represent the following modified exponential intégrale functions :

(2.8)

The preceding functions are written after integration relative to K :
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wi th :
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2,1 Near potential and far potential

The asymptotic behaviour of the integral exponential function

when enables us to separate

terms which decrease a priori, such as , from the others. The first

are generally called near potential and the second ones far potential.

It should be noted that the so-called far potential may still contain

decreasing terms such as . We shall be interested only in far poten-

tial here.

Let 3 be the angle for which is cancelled. We thus have :

supposing R = and with

If we notice that the complex poles (K3 and K4 for lead

to real exponential terms the exponent of which is, to the nearest real

positive function, - R their study will be superfluous since they will

not contribute to the far potential. We then have :
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All the integrals so defined can be expressed in the following form :

Expression in which R represents the projection of on a horizon-

tal plane and increases indefinitely when the asymptotic analysis is

carried out ; it follows that oscillates very rapidly in the

interval (a,b). The function f is continuous, limited and does not

oscillate rapidly in the interval considered. We are therefore in the

conditions to apply the stationary phase principle (Cauchy - Lord Kelvin).

According to the values of the parameters and the functions gi

corresponding respectively to the poles Ki possess or do not

possess minima, maxima or horizontal tangent inflection points, which

determine the behaviour of and of its derivatives to infinity.

We must therefore study the existence of zeros of the functions

g'i and the corresponding signs for g"i

2,2 Asymptotic expansion of 1l(M;t)

The function g1 relative to the first pole is expressed :



The results obtained have been brought together on figure 8. The angle

is defined by the relation , and the angle by the existence

of such as . Note that for the angles

and are equal.

Figure 2

In the open interval , a graphic study will enable us to conclude

on the existences of zeros as well as on the increase or decrease of

g'1 in the vicinity of these values (figure 2).

When tends to , g'1 admits as limit K1 , a value included in

the interval and therefore strictly positive.

The first factor of g'1 is never cancelled. Our study is thus led

to that of zeros of the second factor except for the two integration

area limits for which a local study proves necessary.

When tends to has a limited expansion in relation to

. The latter is written in the vicinity of :

and admits as derivative with respect to :
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The function g2 relative to the second pole is expressed :
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When tends to g'2 is identified with K2 which is always

strictly positive.

In the open interval , a graphic study enables us to conclude

again :

Figure 3

The results obtained are shown together on figure 8. The angle

defined by the existence of such as is always

greater than Kelvin's angle , and tends to when

tends to infinity.

As previously, the study of the zeros of is reduced to that

of the term in square brackets except for the two area limits.

When tends to has a limited expansion in relation to

. The latter is written in the vicinity of :

(2.19

and admits as derivative with respect to :



When tends to , g'3 admits as limit K3 which is always inclu-

ded in the interval and therefore always positive.

When tends to , has a limited expansion whith respect

to . The latter is written in the vicinity of :

We are led to study the zeros of the second factor except for the

limits and possibly for which we shall have to carry out

a local study.

for (1 - > 0) and admits as derivative :

2,3 Asymptotic expansion of :

The study of is more complex than the foregoing study since

there obviously exist two distinct modes according to whether is

smaller or greater than

The function g3 relative to the third pole is expressed :
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If is smaller than , we shall carry out again a graphic study,

but in the interval . Figure 4 enables us to discuss the

existence of zeros of in relation to and

Figure 4

If is greater than has a limited expansion in the

vicinities of
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where is defined by 1 - .In these two cases

clearly possesses a non zero limit independent of and

A graphic study will be carried out in the intervals in which the

two functions are defined (figure 5).

Figure 5.

The results obtained are shown together in figure 8. The angle

is defined by and is therefore identical to , and the

angle by the existence of

It should be noted that for the angles and are equal,



and that for , and are equal to.

The function relative to the fourth and last pole is expressed :
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for (1 - 0) and admits as derivative :

In the present case we still have to study only the zeros of the second

factor, except in respect of the integration domain limits.

When tends to has a limited expansion with respect to

. The latter is written in the vicinity of :

When tends to is identified with K4 which is always stric-

tly positive.

If is smaller than , a graphic study of the open interval

enables us to conclude (figure 5).

Figure 6.



If is greater than , the expansion of are limited to the

vicinities of and :
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It is clear that in these two cases has a non zero limits whatever

and may be.

Figure 7 enables us to illustrate the possible existence of zeros of

Figure 7

The results obtained in this way are shown together in figure 8. It

should be noted that for , there exists an angle defined by

the existence of in such a way that = 0 is

always smaller than , and tends to zero when tends to . When

there is no longer an angle corresponding to a double solution.

Figure 8,

2.4 Description of wave far field :

The respective contributions of each pole in relation to the parameters

and being determined, there remains the definition of the wave far

field aspect according to the values of



If one of the stationary points coincides

with one of the integration limits, its contribution is equal to half

the value given by (2.32). On the other hand, if, at one of the inte-

gration limits, we have and the

contribution of the integral differs both by its coefficient an by

its phase. We obtain :

We recall for this purpose the general form obtained for the integral

I (R). When, on the interval (a,b), the function g possesses maxima

at the points , minima at the points and horizontal tangent

inflection points at the points , then :
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The sign + corresponds to the cases where and

the sign - to the opposite cases.

If is the solution of the equation the wave observed in

the direction propagates according to the axis defined by and,

in the absolute reference, has a celerity of :

Figure 9 gives the general aspect of the different contributions of the

poles with respect to On this subject, several remarks should be

made.

When a double solution exists, it is obtained as being the limit of

two distinct solutions, one of which is a maximum and the other a mi-

nimum. It follows that the two systems are in quadrature in the corres-

ponding direction.

In the direction defined by , the tangent at the potential lines

of one of the wave systems is parallel to the axis Ox. When is smaller

than this remark applies to the annular system, when is equal

to the two wave system having this property ; and when is grea-

ter than it is the system having as asymptote which is

concerned. A consequence of this property is that in the first case the

annular system is more colosed than a half ring, whereas the contrary

occurs in the second case.



When is equal to 1/4, the group velocity of the waves generated

forwards by K3 ont the axis Ox is equal to the speed In fact,

the wave velocity on this axis is then :

(2,36)

The celerity is equal to twice the groupe velocity. In the relative

frame, the velocity of these waves is thus equal to U, and the group

velocity is zero. Then we observe a phenomenon of energy cramming.

The formulae (2.35) show that in the absolute frame the celerities

and are always positive whereas is always negative.

The identification of the curves obtained is not trivial. Indeed, let

us remember that in the case of the Neumann Kelvin problem, the poten-

tial lines are involutes of astroids.

2,5 Radiation condition at infinity :

The asymptotic wave field analysis, and particularly the determination

of the velocity of the different wave systems, provides us a simple

formulation of the radiation condition at infinity.

In the relative frame, all wave systems move away from the body

generating them.

Of course, this general condition encompasses the two special cases of

Froude number zero diffraction radiation and the Neumann Kelvin problem.

In addition, it is not verified by the parasite mathematical solution

obtained by the model of the perfect fluid without .One may be convinced
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simply by remarking that the additionnai solution obtained without

is deduced from the appropriate solution by a simmetry about the

axis Oy.
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III THE DEPTH IS FINITE

When the depth is finite, the velocity potential function is written

in the following form :

n i1!^ - > L i

wi th :



with :

Z'nl = + Z' + 2 (n + 1)

Z'n2= +Z' -2 (n+1) (3.6)

Z'n3 = - Z' + 2 n

Z'n4 = - Z' - 2 (n + 2)

Regarding and , we shall isolate the poles of the

integrand, being careful to conserve their behaviour in their proxi-

mities and at infinity by writing :

Expressions in which M'1 denotes the symmetry of M' with regard to

the bottom, and where the sizes characteristic of flow are adimen-

sionalised in relation to the depth h (1 is replaced by h in the

formuleas (2.5.)). The denomination of the poles in paragraph 2 is

conserved (K1 and K2 for , K3 and K^ for together

with their order.

The integration of in relation to the variable K is much more

complicated than in the case of unlimited depth. We shall restrict

ourselves to giving only the results necessary to the continuation

of our study.

Regarding , the transformation of the product of the hyperbolical

cosines into a sum of exponentials, then the serial expansion of the

function ch-1K allow us to integrate with regard to K and .
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with :
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we obtain :

3,1 Near potential and far potential

As in paragraph 2,1, v/e can separate the terms which decrease a priori

such as R-1 from the others. For the same reasons, only the real poles

will be studied. By writing :

and have the same behaviour as , It is then possible to integrate

analytically the contribution of the poles after decomposing the

product chK (Z + 1) ch K (Z' + 1) into a sum of four exponentials.

As for the contribution of the regular part, it can be approximated

by a series of exponential functions, which leads to a behaviour ana-

logous to that of

-22-



-23-

The far potential is thus written again in a form favorable to the appli-

cation of the stationary phase principle. Nevertheless, a new difficulty

arises here in that the poles are no longer solutions of algebraic

equations and that it is not nossible to put them in an analytical form.

We shall remouve this difficulty by seeking analytical approximations

having the same basic characters as the exact solutions. We shall then

obtain information which will no longer be quantitative, but which will

retain a qualitative significance in that the results will be qualitati-

vely independent of the approximation found.

3,2 Analytical approximation of the poles :

We can express the poles simply only if they are solutions of algebraic

equations the degree of which is equal to two at the most. We shall

therefore approximate by a function of the following form :

since the equations to be solved are :

(3.20)



(3,25)

(3,23)

(3,24)

For K greater than K0, is approximated by We then

find the solution in unlimited depth.

The figure 11 represents the approximation obtained for K0= 2.2, a

qualitatively acceptable approximation since the characterisatics

of are conserved, and particularly in the proximity of origin.

The approximate poles are solutions of the following equations :

It is clear that only the solutions coinciding with those obtained

in ulimited depth at the connection point K0, would be suitable. These

solutions are expressed on the interval [ o , K0], and for real K3 and K4 •
H

By imposing the value of the function and of its derivative at the

origin, y (K) becomes :

(3,22)

The parameters a and are determined by imposing on y(K) to connect

tangentially with in an abscissa point K0. We then obtain for K0

greater than the unit and different from 9/4 :
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(3,30)

3,3 Asymptotic expansion of 1l(M;t)

The function is expressed :

It is unfortunately no longer possible to write the poles in a form

exclusively dependent on the two single parameters and since

and F intervene separately. We are therefore led to discuss the

existence of extrema of the functions according to the values

of ,F and

(3,26)

(3,27)

(3,28)

(3,29)
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(3,31)

and admits as derivative with regard to :
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since K-^ is real and positive whatever may be so that cos belongs

to the interval we are led to the study of the solutions
KoFof the following equation :

(3,32)

Figure 12 shows that there exists a couple and therefore a

Strouhal number so that on the interval :
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has two distinct zeros, a minimum and a maximum of

has one zero, minimum of

We therefore find the same conditions for existence of extrema and

horizontal tangent inflection as in the case of unlimited depth but

the values of depend of course on h.

Figure 12

The function is expressed :

in which K? is defined by the formula (3,27) if
K0F

and by the same formula as in paragraph 2.2 if

cos , It therefore admit as derivative according to the

values of :

(3,34)

(3,35)

(3,33)



Figure 13 shows that there exists a positive angle, but smaller than

that of paragraph 2, so that, for all values of :

is never cancelled if

has a double zero if

has two distinct zeros, a minimum and a maximum of if

has one zero, maximum of if

We again find the same conditions as in the case of unlimited depth,

being this time a function of h.

Figure 13

(3,36)

(3,37)

Since K2 is real and positive whatever may be, we are led to the

study of the solutions of one of these expressions, according to

the values of :
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For :

has one zero, maximum of

has no zero if

Figure 14 illustrates several modes according to the values of the

couples :

since K3 is real and positive whatever may be so that cose belongs

to the interval 1], we are then led to the study of the so-

lutions of the following equation :

3,4 Asymptotic exp ansion of (M;t)

The function is expressed :

(3,38)

and admits as derivative with regard to :
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since K* is real and positive whatever may be, we are led to study

of the solutions of one of theses expressions according to the values

of cos :

where is defined by the formula (3.29) if cos ,

and by the same formula as in paragraph 2.3 if

cos . It therefore admits as derivative according to the

values of cos :

(3,41)

Figure 14

The function is expressed :

Here too we find the same conditions as in the case of unlimited depth

being functions of h.
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Figure 15 illustrates a couple corresponding to so that :

Once again we find the same configuration as in the case of unlimited

depth.

Figure 15

3,5 Generalisation :

For the four poles we have found the same results as those brought

together on figure 8. However, before accepting them such as they

are, several remarks are necessary.

If the figures proposed take into account only one approximation (K0 = 2.2),

different values of K0 have been studied and lead to the same results.

In the case where is high, the poles K1 and K3 must be studied as K2

(3,45)
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and K4, from the two formulations corresponding to the cases of finite

and infinite depth according to the values of cos , but the results

remain qualitatively valid.

It should be noted that the true poles lead to continuous curves the

tangents of which are also continuous. It follows that the junctions

between the arcs relative to finite depth on the one hand, and infinite

depth on the other, must be observed critically, in order not to introduce

errouneous results.

The most important remark concerns the particular value F = 1.0, which

corresponds to a change of mode for the Neumann-Kelvin problem, but which

does not introduce any radical change regarding the problem tackled here.

4 CONCLUSION

The study carried out has enabled us to give a complete description of

the weve far field in the case of unlimited depth, and to show that for

a finite depth the general aspect of the asymptotic wave field is qualitative-

ly conserved, although the values of the different parameters depend on

the depth.

In particular it follows that the radiation condition at infinity is

expressed in the same way in both these cases.
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Figure 1 : Definition of the frames

Figure 2 : Existence of intersections of curves representing the functions

1/2 and - according to the

values of and

Figure 3 : Existence of intersections of curves representing the functions

1/2 and + according to the

values of and

Figure 4 : Existence of intersections of curves representing the functions

1/2 and according to the

values of and

Figure 5 : Existence of intersections of curves representative of the

functions 1/2 and accor-

ding to the values and

Figure 6 : Existence of intersections of curves representative of the

functions 1/2 accor-

ding to the values of and .

Figure 7 : Existence of intersections of curves representative of the

functions 1/2

according to the values of and

Figure 8 : All results relative to the existence of zeros of the functions

in relation to and


